Quantcast
Channel: User Zhaoting Wei - MathOverflow
Viewing all articles
Browse latest Browse all 37

What is the cone of $\mathcal{F}\to i_*i^*\mathcal{F}$ for a divisor $i: D\hookrightarrow X$?

$
0
0

Let $X$ be a smooth projective variety of dimension $n$ and $i: D\hookrightarrow X$ be a smooth, anti-canonical divisor in $X$. In other words,$[D]+[\omega_X]=[0]$ where $\omega_X$ is the canonical bundle of $X$.

Let $i^*: D^b_{coh}(X)\to D^b_{coh}(D)$ and $i_*: D^b_{coh}(D)\to D^b_{coh}(X)$ be the derived pullback and pushforward functors. By adjunction, for any $\mathcal{F}\in D^b_{coh}(X)$, we have a morphism $\mathcal{F}\to i_*i^*\mathcal{F}$.

Now the question is how to complete the above morphism to an exact triangle in $D^b_{coh}(X)$. In particular, do we have an exact triangle like$$\mathcal{F}\to i_*i^*\mathcal{F}\to \mathcal{F}\otimes^L_{\mathcal{O}_X}\omega_X[1]\to \mathcal{F}[1]?$$

I also wonder if we can solve the same problem if we do not require that the divisor $D$ is anti-canonical.


Viewing all articles
Browse latest Browse all 37

Trending Articles